

LA MESURE DE L'ÉNERGIE ÉLECTRIQUE : à quoi sert un compteur électrique ? que nous apprend une facture d'électricité ?

Exercice 1

Florence veut installer ur Elle aimerait savoir quell	-			
1) Quelle est l'unité d'én	ergie du système	e international ?		
☐ le kilowattheure	☐ le watt	☐ le joule		
Elle trouve sur internet quasion 350 kWh.	ue l'énergie moy	enne consommée	e par un spa varie ei	ntre 200 kWh et
2) Donnée : « L'énergie e puissance nominale de l'é				oortionnelle à la
Quelle relation mathémat	ique devra-t-elle	utiliser pour véri	fier sa consommatic	on?
	$E=P\times U$	\Box $E=P/t$	\Box E= $P \times t$	
3) Quelle conversion d'én	nergie a lieu dans	s le spa lors du ch	auffage de l'eau?	
☐ énergie thermique en é ☐ énergie électrique en é ☐ énergie électrique en é	energie solaire.			
4) Comment expliquer q double ? Proposer une (c		-	'un spa puisse vario	er du simple au
Exercice 2	(D'après sujet de	DNB Série Générai	le Session 2013)
L'électricité est utilisée p	our faire fonction	nner tous les appa	areils électriques à l	a maison.
1) À quoi correspond l'in	dication donnée	en kWh sur le co	mpteur électrique à	la maison ?
		· · · · · · · · · · · · · · · · · · ·		
Un ordinateur porte la me	ention 150 W por	ur une tension de	230 V. On le branc	che sur une prise

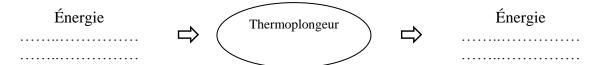
du secteur pendant 30 minutes.

2) Calculer l'énergie électrique consommée en watt-heure puis en joule.						
3) Calculer l'intensité du courant dans l'ordinateur lors de son fonctionnement.						
4) Lors de l'utilisation de l'ordinateur, quel est le rôle d'un coupe circuit en cas de surintensité ?						
(D'après sujet de DNB Série collège Antilles-Guyane Session juin 2009) <u>Exercice 3</u>						
Un élève se demande combien de foyers la centrale de Sainte-Croix permet d'alimenter. Il dispose des éléments suivants :						
Document 1 La centrale hydroélectrique de Sainte-Croix :						
Document 2 Consommation annuelle moyenne d'un foyer : · 6 700 kWh						
Document 3 Relation entre la puissance et l'énergie électrique : $E = P \times t$ $\cdot E$ s'exprime en joule (J) si P est exprimée en watt (W) et t en seconde. $\cdot E$ s'exprime en kilowattheure (E) si E 0 est exprimée en kilowatt (E 0 et E 1 en heure. Rappels : E 1 an = 365 j 1 j = 24 h 1 h = 3 600 s						
À partir de ces documents, déterminer le nombre de foyers que la centrale de Sainte-Croix peut alimenter. Présenter la démarche suivie.						

Exercice 4

Dans un lave-linge, le thermoplongeur permet de chauffer pendant les cycles de lavage. Il est constitué d'un tube en acier inoxydable, à l'intérieur duquel se trouve une résistance protégée par un matériau isolant. Il est placé en bas de la cuve afin d'être toujours immergé.

Source: Tout-Electroménager.fr


1) La plaque signalétique du thermoplongeur donne les informations :

230 V	50 Hz	2 000 W
$26,5 \Omega$	120°C au	maximum

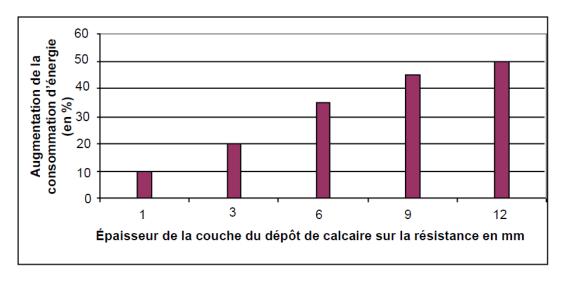
Compléter le tableau suivant :

Grandeur physique		Fréquence		Résistance	
Unité	volt		watt	ohm	degré Celsius
Symbole de l'unité		Hz		Ω	° C

2) On donne ci-dessous le diagramme des transferts d'énergie pendant la phase de chauffage de l'eau de lavage. **Compléter** ce diagramme avec les mots suivants : électrique, thermique.

- 3) Pendant un cycle de lavage complet, le thermoplongeur chauffe l'eau pendant 45 minutes.
- a) Convertir, en heure, la durée de chauffage de l'eau.

.....


b) **Cocher** la case correspondant à la relation correcte donnant l'énergie, en Wh, consommée par le thermoplongeur pendant cette durée de chauffage :

$$\Box E = 2.000 \times 45$$

$$\Box E = 2.000 \times 0.75$$

$$\Box E = 230 \times 0.75$$

4) Le calcaire, en se déposant sur le thermoplongeur, forme une enveloppe qui agit comme un isolant thermique entre l'eau et la résistance chauffante. On donne le document suivant :

Comment évolue la consommation d'énergie lorsque l'épaisseur du dépôt de tartre sur la résistance augmente ?

(D'après sujet de DNB Série Professionnelle Session 2014)

Exercice 5

Le culot d'une lampe de phare avant de bicyclette porte les indications suivantes : 6 V - 0.4 A

1) **Indiquer** la formule (avec les unités) qui permet de calculer dans le cas de la lampe, la puissance électrique P en fonction de la tension électrique U et de l'intensité I du courant électrique.

2) **Calculer** la puissance électrique consommée par la lampe du phare avant du vélo.

.....

3) Parmi les formules ci-dessous, **entourer** celle qui permet de calculer l'énergie électrique E consommée par la lampe en fonction de sa puissance P et de la durée t de fonctionnement.

$$E = P / t$$

$$E = P \times t$$

$$E = t / P$$

(D'après sujet de DNB Série collège session juin 2010)