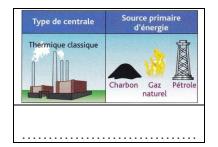
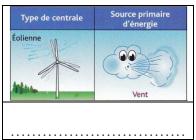
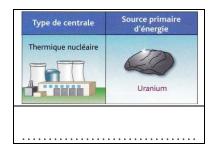


DES POSSIBILITÉS DE PRODUCTION DE L'ÉLECTRICITÉ : quel est le point commun des différentes centrales électriques ?




Exercice 1


Un lave-vaisselle est branché aux bornes d'une prise électrique. Une centrale électrique fournit l'énergie électrique nécessaire à son fonctionnement. 1) **Donner** le nom de la partie commune à toutes les centrales électriques. 2) Citer une source d'énergie renouvelable utilisée par une centrale électrique. (D'après sujet de DNB Série Générale Session 2014) Exercice 2 La tension du secteur est produite par l'alternateur d'une centrale électrique 1) **Donner** les deux principaux éléments présents dans un alternateur. 2) **Donner** un exemple de centrale électrique utilisant une source d'énergie renouvelable. (D'après sujet de DNB Série Générale Session 2014)

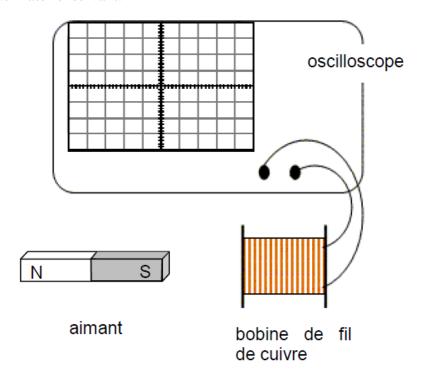
Exercice 3

1) Chaque type de centrale utilise une source primaire d'énergie. **Indiquer** pour chacun des trois cas si la source primaire d'énergie utilisée est « renouvelable » ou « non renouvelable ».

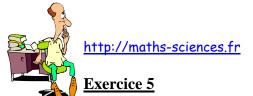
2) Quel est le nom de l'élément commun à ces trois centrales permettant de convertir l'énergie
de la source primaire en énergie électrique ?

(D'après sujet de DNB Série Générale Centres Étrangers Session 2013)

Exercice 4


Une cordeuse est branchée sur le secteur, lequel est alimenté par une centrale électrique.

1) **Nommer** la partie commune à toutes les centrales électriques qui permet de transformer de l'énergie mécanique en énergie électrique.



.....

2) On dispose du matériel suivant.

a) Expliquer comment on produit une tension électrique aux bornes de la bobine à l'aide de ce matériel.
b) Dans la manipulation réalisée, expliciter le rôle de l'oscilloscope.

Pour un logement, la puissance électrique est en moyenne de 10 kW.

Document : Puissance de différentes « centrales » électrique.

Il existe plusieurs types de « centrales » électriques. Leur puissance électrique peut varier de quelques kilowatts à quelques gigawatts.

Alternateur de bicyclette	3 watts
Alternateur d'automobile	1 kilowatt
Eolienne de petite taille	10 kilowatts
Eolienne de grande taille	750 kilowatts
Usine marémotrice	240 mégawatts
Centrale hydraulique importante	500 mégawatts
Centrale thermique à flamme	500 mégawatts
Centrale nucléaire	2 gigawatts

Symboles:

Source : livre de physique – chimie, Belin.

Données :

1 kW = 1000 W	W (watt)
1 MW = 1000 kW	kW (kilowatt)
$1~\mathrm{GW} = 1000~\mathrm{MW}$	MW (mégawatt)
	GW (gigawatt)
1) Déterminer combien de logements taille. Expliciter la démarche.	s peuvent être alimentés par une éolienne de grande
2) Comparer ce résultat avec le nor nucléaire.	nbre de logements que peut alimenter une centrale
3) Citer le(s) intérêt(s) présenté(s) par centrale nucléaire.	l'utilisation d'une éolienne par rapport à celle d'une

Exercice 6

Les matchs de foot pouvant se dérouler de nuit, il faut donc éclairer les terrains grâce à l'énergie électrique. Citer un type de centrale produisant de l'énergie électrique à partir d'une source non renouvelable.

(D'après sujet de DNB Série Générale Polynésie Session 2015)

(D'après sujet de DNB Série collège Antilles-Guyane Session 2012)

Exercice 7

Au cours du freinage, certains TGV sont dotés d'un système permettant de faire fonctionner les moteurs électriques du train comme une mini-centrale électrique. L'énergie cinétique est alors utilisée pour faire tourner l'axe du moteur.

1) Le diagramme suivant représente les conversions d'énergie au cours du freinage. **Compléter** ce diagramme à l'aide des expressions suivantes : énergie perdue ; énergie cinétique ; énergie électrique. Moteur au cours du freinage 2) **Nommer** la partie commune à toutes les centrales électriques. (D'après sujet de DNB Série Générale Asie du Sud Est Session 2013) **Exercice 8** Un détecteur de métaux est alimenté par deux piles de 9 V. 1) Le diagramme suivant représente les transferts d'énergie dans une pile électrochimique. Compléter ce diagramme avec les mots: « thermique », « chimique » et « « électrique ». Énergie Énergie Pile électrochimique Pertes Énergie 2) **Expliquer** en quelques lignes pourquoi une pile peut s'user.