Justifier la réponse.

DEVOIR SUR LA FONCTION CARRÉ

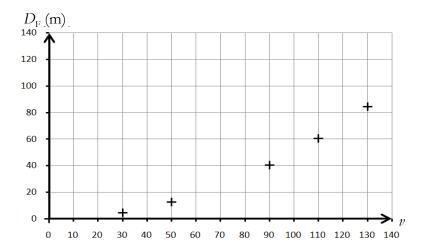
En sortie d'agglomération, sur une route sèche, un conducteur roule à 60 km/h. Il voit un piéton traverser la chaussée et à l'instant où il commence à freiner, 20 mètres séparent le piéton du véhicule.

L'objectif de cet exercice est de déterminer si le véhicule met moins de 20 mètres pour s'arrêter.

1) Lors d'un freinage d'urgence, la distance D_F parcourue par une voiture pendant le temps de freinage dépend de la vitesse v de cette voiture et de l'état de la chaussée.

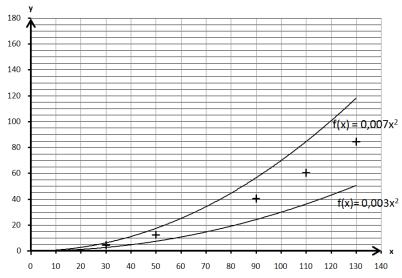
Le tableau suivant indique, sur route sèche, les distances $D_{\rm F}$ pour cinq vitesses réglementaires

v (km/h)	30	50	90	110	130
$D_{\mathrm{F}}\left(\mathrm{m}\right)$	4,5	12,5	40,5	60,5	84,5


(source : Sécurité Routière).

La suite de nombres formée par les vitesses v est-elle proportionnelle à celle formée par les distances $D_{\rm F}$?

Devoir sur la fonction carré 1/3


2) À l'aide d'un logiciel, on obtient la représentation graphique de la série de points de coordonnées (v; D_F) ci-dessous.

Le modèle de courbe qui s'ajuste au mieux à la série de points est la représentation graphique d'une fonction f définie par $f(x) = k \times x^2$ où k est un nombre décimal donné.

Le but des questions suivantes est de déterminer la valeur de *k* qui convient.

a) En utilisant le logiciel, on a testé les valeurs k = 0,003 et k = 0,007. La copie d'écran obtenue figure ci-dessous.

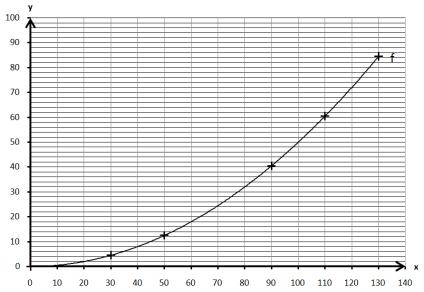
En observant ces représentations graphiques, indiquer si les valeurs de k expérimentées conviennent. **Justifier** la réponse.

.....

b) **Compléter** l'inégalité suivante concernant la valeur k cherchée : k <

c) En faisant des essais à la calculatrice, **déterminer** la valeur de k qui convient et **donner** l'expression de f(x) en fonction de x.

La valeur de k qui convient est : et f(x) =


Devoir sur la fonction carré 2/3

d) Compléter le tableau de valeurs de la fonction f ci-dessous.

х	30	50	90	110	130
f(x)					

3) Dans le plan rapporté au repère orthogonal ci-dessous, on a représenté cette fonction f, sur l'intervalle [0; 130].

a) Décrire les variations de la fonction f .
b) Déterminer graphiquement l'image de 60 par la fonction f. Laisser apparents les traits utiles à la lecture et rédiger la réponse.
······································

4) On admet que si x est la vitesse (en km/h) d'un véhicule, f(x) est, sur route sèche, la distance de freinage (en m) de ce véhicule.

Déduire de la question précédente si le véhicule, roulant sur route sèche à 60 km/h lorsque son conducteur commence à freiner, met moins de 20 mètres pour s'arrêter. **Justifier** la réponse.

 	 •••••••••••••••••••••••••••••••••••••••

(D'après sujet de BEP Session juin 2011)