

DEVOIR SUR LES VECTEURS

Le plan ci-dessous est extrait d'une carte de course d'orientation. L'échelle est de 1/10 000. Signification : 1 cm sur la carte représente 100 m sur le terrain.

- 1) **Mesurer**, en cm, la distance séparant le poste $\mathbb O$ du poste $\mathbb O$ à partir des centres des cercles. **Calculer**, en m, la distance réelle à vol d'oiseau P_1P_2 .
- 2) Pendant la course, un orienteur passe successivement par les points de la carte suivants :

poste ①: $P_1(170; 290)$;

A(440; 440);

B(330; 540);

poste ② : $P_2(400;680)$.

a) Calculer les coordonnées des vecteurs $\overrightarrow{P_1A}$ et \overrightarrow{AB} .

b) **Calculer** la norme du vecteur $\overrightarrow{P_1A}$. **Arrondir** la valeur à l'unité.

c) Calculer $\|\overrightarrow{P_1A}\| + \|\overrightarrow{AB}\| + \|\overrightarrow{BP_2}\|$ sachant que $\|\overrightarrow{AB}\| = 149$ et $\|\overrightarrow{BP_2}\| = 157$.

3) Le résultat du calcul de la question 2) c) est la mesure de la distance réelle P_1P_2 parcourue par un orienteur débutant. **Calculer** la différence entre cette distance réelle parcourue par cet orienteur et la distance P_1P_2 à vol d'oiseau.

Exprimer cette différence en pourcentage par rapport à la distance à vol d'oiseau. **Arrondir** la valeur au dixième.

(D'après sujet de BEP Secteur 3 Session juin 2007)

Devoir sur les vecteurs 1/1