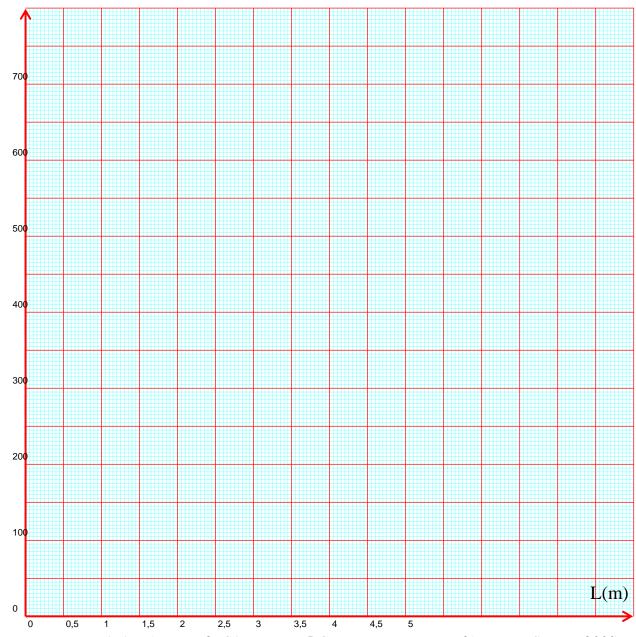
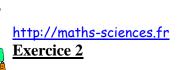


CONTRÔLE SUR LES FONCTIONS LINÉAIRES

Exercice 1

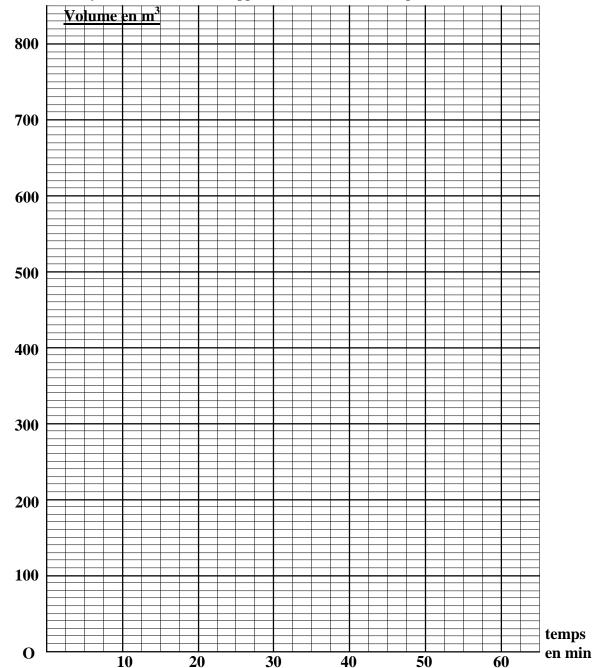

1) La longueur L d'une buse peut varier de 1 m à 5 m. La masse m (en kg) d'une buse en fonction de sa longueur L (en m) est donnée par la relation : $m = 150 \times L$.

Compléter le tableau de valeurs ci-dessous.


Longueur L (m)	1	2	3	4	5
Masse m (kg)					

- 2) Dans le repère donné ci-après, placer et relier les points de coordonnées (L; m).
- 3) Déterminer graphiquement la longueur d'une buse dont la masse est 525 kg. Laisser les traits de lecture apparents.

m(kg)


(D'après sujet de CAP secteur 5 Groupement inter académique II Session 2003)

1) Avec un débit de $12 \text{ m}^3/\text{min}$, compléter le tableau de proportionnalité suivant donnant le volume d'air aspiré V en fonction du temps t.

Temps en min	t	0	1	15	20	45	50	60
Volume en m ³	V	0	12			540		

- 2) Sur le repère figurant ci-après, placer les points dont les coordonnées (t; V) sont données dans le tableau ci-dessus. Abscisses : temps en min. Ordonnées : volume en m^3 .
- 3) Tracer le segment de droite représentant cette situation de proportionnalité.
- 4) Déterminer en utilisant la représentation ci-après, le temps d'évacuation correspondant à un volume d'air recyclé de 430 m³. Faire apparaître les traits utilisés pour la lecture.

(D'après sujet de CAP Secteur 3 Groupement des Académies de l'Est Session juin 2002)