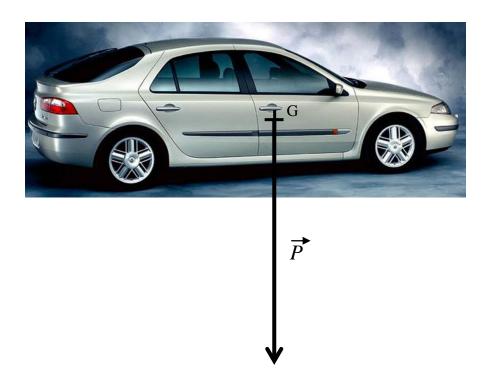


CONTRÔLE SUR LE POIDS ET LA MASSE


Exercice 1

La Laguna de M. Vaillant a une masse à vide de m = 1300 kg.

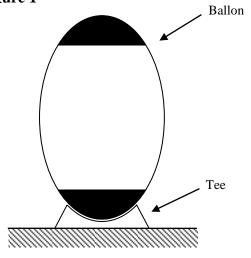
1) Calculer le poids P de la voiture. Rappel : $P = m \times g$ avec g = 10 N/kg

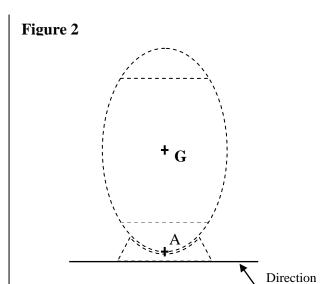
2) À l'aide du schéma ci-dessous, compléter le tableau de caractéristiques du poids P.

Échelle: 1 cm représente 2 000 N.

Force	Point d'application	Direction	Sens	Valeur
\vec{P}^{lack}				

(D'après sujet de CAP Secteur 5 Métropole Session 2008)


horizontale



Exercice 2

Pour taper un coup de pied, le ballon est posé au sol sur un « tee » (figure 1).

Figure 1

- 1) Le ballon a une masse m = 410 g; exprimer la masse m en kilogramme.
- 2) Calculer, en newton, la valeur P du poids du ballon. Arrondir la valeur à l'unité. On prend 9,8 N/kg comme valeur approchée de g et on rappelle la relation $P = m \times g$.
- 3) On veut préciser les caractéristiques de la force \vec{P} représentant le poids du ballon.
- a) On note G le centre de gravité du ballon et on considère que P=4 N. Compléter le tableau des caractéristiques de la force \vec{P} :

Action mécanique	Notation	Point d'application	Droite d'action	Sens	Valeur (N)
Poids du ballon	$ec{P}$	G			4

b) Sur la figure 2 en haut de la page, tracer la représentation \vec{P} du poids du ballon. Unité graphique : 1 cm représente 4 N

(D'après sujet de CAP Secteur 1 Métropole Session 2008)

Exercice 3

Un sac de ciment a une masse de 35 kg.

1) Calculer son poids en newton sachant que la relation entre le poids et la masse est : $P=m\times g \qquad \qquad (g=10\ N/kg)$

2) Le poids d'un corps étant une force, compléter le tableau des caractéristiques de cette force donné ci-dessous.

Force	Point d'application	Droite d'action	Sens	Valeur
	G			

3) À partir du point G, tracer ci-dessous le vecteur qui représente le poids du sac de ciment en respectant l'échelle proposée.

G +

1 cm représente 50 N

(D'après sujet de CAP Secteur 2 Académie de la Martinique Session 2005)