

DEVOIR SUR LES FONCTIONS LINÉAIRES

Les tubes en polybutène sont destinés principalement à la distribution de liquide froid ou chaud (chauffage, sanitaire ou climatisation).

1) Caractéristiques dimensionnelles.

code	diamètre du	épaisseur de	Ø intérieur du	masse	contenance en
Code	tube (mm)	paroi (mm)	tube (mm)	métrique (g/m)	eau (L/m)
728850	25	2,3	20,4	152	0,33
728851	32	3,0	26,0	254	0,53
728852	40	3,7	32,6	392	0,83
728853	50	4,6	40,8	610	1,31

Indiquer le diamètre (Ø) intérieur d'un tube dont le code est 728852.

2) Dans une canalisation, il y a lieu de considérer les conséquences dues aux variations de températures (dilatation ou contraction).

La variation de longueur ΔL , en mm, se calcule suivant la formule :

$$\Delta L = 0.13 \times L \times (T_S - T_P)$$
 dans laquelle :

0,13 est le coefficient de dilatation linéaire, exprimé en mm/m.°C,

L est la longueur de la canalisation, exprimée en mètres,

 $T_{\rm S}$ est la température de service (égale à celle du liquide à l'intérieur) exprimée en $^{\circ}$ C,

 $T_{\rm P}$ est la température de pose (égale à la température du tube au moment de la pose), exprimée en °C.

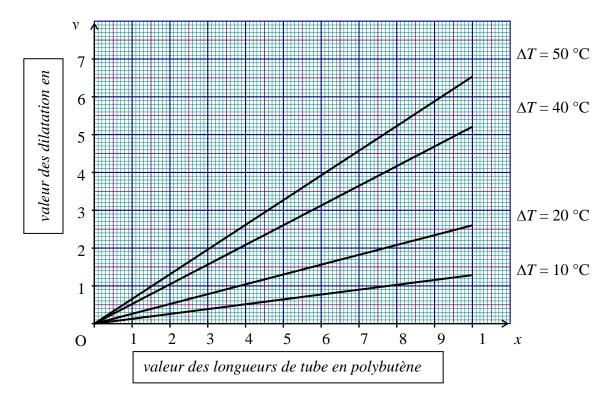
a) Utiliser directement la formule pour calculer, arrondie à $0.1\,$ mm, la variation de longueur ΔL d'une colonne montante de $5.40\,$ mètres de longueur, mise en oeuvre par $25\,$ °C extérieur et véhiculant de l'eau à $3\,$ °C.

$$\Delta L = \dots$$

b) Indiquer, en entourant la bonne réponse, si le tube

	a a d:1 a 4 a	
se contracte	se dilate	•

3) Construction de l'abaque de dilatation.

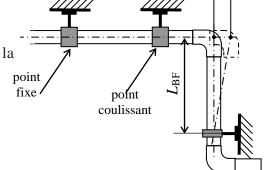

On considère la situation de type linéaire définie par : y = 4,2 x, pour x appartenant à l'intervalle [0; 10].

a) Compléter le tableau de valeurs suivant :

х	0	2	5	7	9	10
У	0	8,4			37,8	42

- b) Placer les points de coordonnées (x; y) en utilisant le repère suivant.
- c) Tracer la représentation graphique correspondante, en utilisant le repère suivant.

4) Déterminer, en utilisant l'abaque, la dilatation d'un tube en polybutène de longueur 5,40 m pour une différence de température $\Delta T = 40$ °C . Laisser apparents les traits utiles à la lecture.


$$\Delta L = \dots$$

5) Le polybutène permet d'absorber les variations ΔL de longueur grâce à son élasticité. (voir figure ci-contre).

La longueur nécessaire $L_{\rm BF}$ du bras de flexion est donnée par la relation suivante :

$$L_{\rm BF} = 10 \sqrt{(\Delta L \times D)}$$

avec : $\begin{cases} \Delta L : \text{variation de longueur en mm} \\ D : \text{diamètre du tube en mm} \end{cases}$

Calculer, arrondie au mm, la longueur nécessaire du bras de flexion $L_{\rm BF}$ pour un tube en polybutène de diamètre 40 mm si la variation de longueur ΔL est de 52 mm.

$$L_{\rm BF} =$$

(D'après sujet de CAP Secteur 2 Métropole – la Réunion - Mayotte Session 2006)