

CONTRÔLE SUR LA CHAÎNE ÉNERGÉTIQUE

Exercice 1

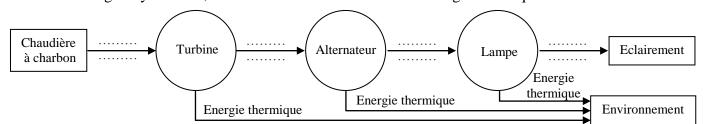
Cinq types de sources d'énergie produisent de l'énergie électrique :

- L'eau
- L'uranium enrichi
- Le pétrole
- Le soleil
- Le vent
- 1) Compléter le tableau 1 ci-dessous.
- 2) Indiquer par une croix dans le tableau 2 ci-dessous, si ces énergies sont renouvables ou non.

Système de production	Source		
d'énergie électrique	d'énergie		
Cellules photovoltaïques	Soleil		
	Vent		
Réacteurs			
	Pétrole		
Barrages			

Source d'énergie	Renouvelable	Non renouvelable
Uranium		
Vent		
Pétrole		
Eau		
soleil		

Tableau 1


Tableau 2

- 3) Parmi ces sources d'énergie, l'une d'entre elles peut-être à la fois stockée et renouvelable. Laquelle ?
- 4) Compléter, ci-dessous, la chaîne énergétique d'une centrale thermique en indiquant à la place des pointillés le type d'énergie transmise :
 - énergie mécanique;

- énergie électrique ;

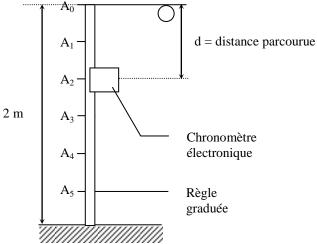
- énergie rayonnante;

- énergie thermique.

- 5) Cette chaîne énergétique montre que l'environnement reçoit une énergie autre que la lumière. Laquelle ?
- 6) Au sein d'une centrale thermique, l'ensemble « turbine + alternateur » a un rendement total η_{total} donné par la relation :

$$\eta_{total} = \frac{\acute{e}nergie~utile}{\acute{e}nergie~reçue}$$

La turbine reçoit en une heure une énergie de 270 000 MJ et l'alternateur fournit au réseau électrique une énergie de 208 000 MJ. (1 mégajoule $= 10^6$ J).


Calculer le rendement total $\,\eta_{\text{total}}\,$ de cette centrale. Arrondir le résultat à 0,01.

(D'après sujet de BEP Productique Académie de Paris-Créteil-Versailles Session juin 2000)

Une bille de masse m = 20 g est lâchée sans vitesse initiale du haut d'une règle graduée de 2

m de haut.

On mesure pour des distances parcourues fixées, la durée du parcours grâce à un chronomètre électronique. On obtient les résultats suivants :

Points	A_0	A_1	A_2	A_3	A_4	A_5
Distances d (m)	0	0,30	0,60	0,90	1,20	1,50
Durées t (s)	0	0,247	0,350	0,428	0,495	0,533

Le mouvement de la bille est rectiligne uniformément accéléré. Tous les résultats des calculs des questions 1), 2), 3), 4) et 5) seront rassemblés dans le tableau qui suit.

- 1) Calculer pour chaque point A_0, A_1, \dots la hauteur h de la bille par rapport au sol (en m).
- 2) L'énergie potentielle de pesanteur E_p de la bille se calcule par la relation $E_p = mgh$ avec : m : masse de la bille en kg, g = 9.8 m/s², E_p en joules (J). Calculer E_p pour les points A_1 et A_4 à 10^{-3} près.
- 3) Calculer pour chaque point la vitesse v de la bille à 10^{-2} près, sachant qu'à un instant t donné : v = gt, avec g = 9.8 m/s², t en secondes, v en m/s.
- 4) L'énergie cinétique E_c de la bille se calcule par la relation : $E_c = \frac{1}{2}mv^2$, avec : v en m/s, m en kg, E_c en J. Calculer pour les points A_1 et A_4 la grandeur E_c à 10^{-3} près.
- 5) L'énergie mécanique E_m de la bille est donnée par la relation : $E_m = E_p + E_c$. Calculer pour les points A_1 et A_4 la grandeur E_m en joules. Quelle remarque peut-on faire à propos de cette grandeur ?

Points	A_0	A_1	A_2	A_3	A_4	A_5
Distances d (m)	0	0,30	0,60	0,90	1,20	1,50
Durées t (s)	0	0,247	0,350	0,428	0,495	0,533
h						
E_p	0,392		0,274	0,216		0,098
v						
E _c	0		0,118	0,176		0,294
$E_{\rm m}$	0,392		0,392	0,392		0,392

(D'après sujet de BEP groupement interacadémique Ouest Session 2000)