

ÉQUATIONS ET SYSTÈMES D'ÉQUATIONS DU 1er DEGRÉ

Equations du premier degré à une inconnue

> Toute équation du premier degré à une inconnue peut se ramener à une équation de la forme :

$$ax + b = 0$$

L'équation ax + b = 0 admet, si $a \ne 0$, une solution et une seule : $\frac{-b}{a}$

 \triangleright L'équation $A(x) \times B(x) \times C(x) = 0$ est équivalente au système :

$$A(x) = 0$$
ou
$$B(x) = 0$$
ou
$$C(x) = 0$$

Système de deux équations du premier degré à deux inconnues

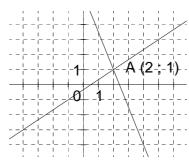
- Le système d'équation $\begin{cases} ax + by = c \\ a'x + b'y = c \end{cases}$ d'inconnues x et y admet une solution unique si son déterminant ab ba est différent de 0.
- Les trois principales méthodes pour résoudre un système de deux équations à deux inconnues sont :
 - la méthode d'addition ou de combinaison linéaire
 - la méthode de substitution
 - la méthode graphique

Trois cas possibles :

1^{er} cas

Pour le système $\begin{cases} 2x - 3y = 1 \\ 5x + 2y = 12 \end{cases}$, on a graphiquement deux droites sécantes en A(2; 1)

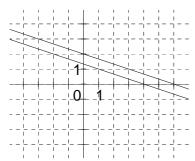
Le système a une solution. $S = \{(2,1)\}.$



2^{ème} cas

Pour le système $\begin{cases} x + 3y = 6 \\ 2x + 6y = 8 \end{cases}$, on a graphiquement deux droites parallèles.

Le système n'a pas de solution. $S = \emptyset$.



3^{ème} cas

Pour le système $\begin{cases} x + 3y = 6 \\ 2x + 6y = 12 \end{cases}$, on a graphiquement deux droites confondues.

Le système admet une infinité de solutions. $S = \mathbb{R}$.

