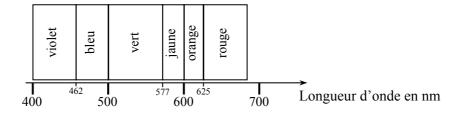


CONTRÔLE SUR LA L<u>um</u>ière et la Couleur


Exercice 1

L'éclairage dans un bâtiment est assuré par des lampes au sodium.

La radiation monochromatique émise par chaque lampe est caractérisée par une longueur d'onde $\lambda = 580$ nm (1 nm = 10^{-9} m).

Déterminer en utilisant le schéma ci-dessous et en justifiant votre réponse :

- 1) la couleur de la radiation,
- 2) la période puis sa fréquence.

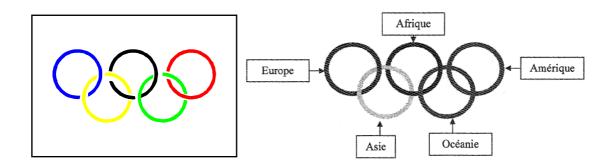
(D'après sujet de Bac Pro Métal-Alu-verre-Matériaux de synthèse Session juin 2006)

Exercice 2

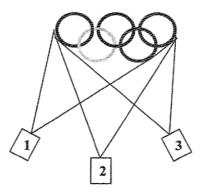
Une cabine de relaxation est éclairée par une lumière tamisée. La fréquence f de la radiation lumineuse est 5×10^{14} Hz.

- 1) Calculer la longueur d'onde λ dans l'air ; la réponse sera donnée sous la forme $\lambda = a \times 10^7 m$.
- 2) En déduire sa couleur à l'aide du tableau ci-dessous.

Couleurs	UV	violet	bleu	vert	jaune	orange	rouge	IR
Longueurs d'ondes λ en m	4×10 ⁻⁷	4,5×1	0 ⁻⁷ 5×10	5,7×10	0 ⁻⁷ 5,9×10	0 ⁻⁷ 6,1×10) ⁻⁷ 7,5×10	0 ⁻⁷


On donne c: célérité de la lumière = 3×10^8 m/s.

(D'après sujet de Bac Pro Esthétique Session juin 2006)



Exercice 3

L'emblème olympique est constitué de cinq anneaux de couleurs différentes. Chaque couleur représente un continent. En lumière blanche l'anneau bleu représente l'Europe, le noir l'Afrique, le rouge l'Amérique, le jaune l'Asie et le vert l'Océanie.

Dans un magasin de sport, à l'occasion des jeux olympiques, on décide d'accrocher un panneau où figure l'emblème olympique. Ce panneau peut être éclairé par trois projecteurs; le projecteur 1 émet un faisceau lumineux rouge, le projecteur 2 un faisceau lumineux vert et le projecteur 3 un faisceau lumineux bleu.

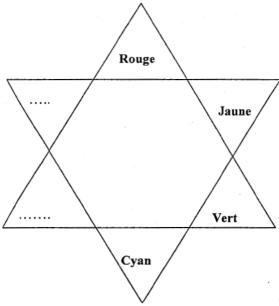
Indiquer en complétant le tableau suivant, de quelle couleur apparaît chaque anneau lorsque le panneau est éclairé :

- 1) par le projecteur 1 et par le projecteur 3,
- 2) par le projecteur 2 et par le projecteur 3,
- 3) par le projecteur 1 et par le projecteur 2.

Anneau	Europe	Afrique	Amérique	Asie	Océanie
Panneau éclairé					
en lumière blanche	Bleu	Noir	Rouge	Jaune	Vert
par les projecteurs 1 et 3	Bleu	Noir	Rouge		
par les projecteurs 2 et 3	Bleu	Noir			Vert
par les projecteurs 1 et 2			Rouge	Jaune	Vert

(D'après sujet de Bac Pro Artisanat et Métiers d'Art Session juin 2006)

Exercice 4


La lumière émise par une source lumineuse est analysée par un spectroscope de haute résolution. Le spectre d'émission obtenu présente une seule raie de longueur d'onde 450 nanomètres (voir ci-dessous).

S	pectre d'émission
450 nanomètres	

1) a) À partir du tableau ci-dessous déduire la couleur de cette lumière.

Longueur d'onde dans l'air λ en nm	Entre 400 et 440	Entre 440 et 490	Entre 490 et 565	Entre 565 et 595	Entre 595 et 620	Entre 620 et 750
Couleur dominante	Violet	Bleu	Vert	Jaune	Orange	Rouge

- b) Calculer, à 10^{12} Hz près, la fréquence f de cette radiation ($\lambda = 450$ nm).
- 2) Synthèse additive
- a) Compléter le schéma ci-dessous en indiquant les deux couleurs manquantes.

- b) On éclaire simultanément la surface d'un écran blanc à l'aide de 2 faisceaux monochromatiques, l'un de couleur verte et l'autre de couleur rouge. Indiquer de quelle couleur paraît l'écran.
- 3) Synthèse soustractive

On dispose de trois filtres de couleur respective jaune, magenta et cyan. Indiquer le ou les filtres à interposer sur le faisceau lumineux émis par une source de lumière blanche de façon à obtenir une lumière bleue.

On donne : $c = 3.00 \times 10^8 \text{ m.s}^{-1}$

(D'après sujet de Bac Pro Production Graphique Session juin 2006)