

CONTRÔLE SUR LA L<u>um</u>ière et la couleur

Exercice 1

Des plats sont décorés d'une bande bleue sur fond blanc.

Les plats sont éclairés successivement par de la lumière blanche puis de la lumière bleue et enfin par de la lumière verte.

Recopier et compléter le tableau ci-dessous, en indiquant la couleur perçue par l'œil pour les divers éclairages sur chacune des deux parties du plat.

ECLAIRAGE	PERCEPTION	ON DE L'OEIL
	Centre	Bande
Lumière blanche		
Lumière bleue		
Lumière verte		

(D'après sujet de Bac Pro MOM option matériaux céramiques Session juin 2002)

Exercice 2

Un imprimeur vient de s'équiper d'une nouvelle technologie : le CTP (Computer to Plate) violet. Cette technologie consiste en la préparation directe des plaques en isolant par un laser violet, utilisable en lumière jaune, consommant peu d'énergie et ne produisant pas de déchets argentiques.

- 1) Une radiation monochromatique a une longueur d'onde $\lambda = 405$ nm; indiquer sa couleur.
- 2) Calculer sa fréquence.
- 3) On dispose de trois faisceaux de couleur primaire Rouge, Vert et bleu. Indiquer quels sont les faisceaux qu'il faut additionner pour obtenir une couleur jaune sur un écran initialement blanc.

(D'après Bac Pro Artisanat et métiers d'art Session juin 2003)

Exercice 3

Une lampe émet dans le domaine du visible. A l'aide d'un dispositif on mesure les longueurs d'onde des radiations dans le vide {480 nm; 530 nm; 590 nm; 720 nm}. L'examen du spectre montre la série de couleurs jaune, vert, rouge, bleu.

La célérité de la lumière dans le vide vaut approximativement 3×10^8 m/s et un nanomètre (nm) vaut 10^{-9} m.

- 1) Calculer les fréquences des radiations de longueur d'onde $\lambda_1 = 720$ nm et $\lambda_2 = 480$ nm.
- 2) Compte tenu des informations, associer à chaque couleur précitée sa longueur d'onde.

Rouge	Jaune	Vert	Bleu	
-------	-------	------	------	--

(D'après sujet de Bac Pro E.I.E. Session septembre 2002)

Exercice 4

On dispose de trois faisceaux de lumière monochromatique A, B et C, de longueurs d'onde respectives $\lambda_A = 4.5 \times 10^{-7} \text{m}$; $\lambda_B = 5.3 \times 10^{-7} \text{m}$ et $\lambda_C = 7.0 \times 10^{-7} \text{m}$.

1) A partir du tableau ci-dessous, donner les couleurs correspondantes des trois faisceaux.

λ (nm)	400440	440490	490565	565595	595620	620750
Couleur	violet	bleu	vert	Jaune	orange	rouge

On rappelle: $1 \text{nm} = 10^{-9} \text{ m}$

- 2) Sur un écran blanc, on superpose les faisceaux de longueur d'onde λ_A et λ_B .
- a) Quelle couleur obtient-on?
- b) Qu'obtient-on si on superpose les trois faisceaux?
- 3) Calculer les fréquences f_A et f_C correspondant aux faisceaux A et C.

On rappelle : célérité de la lumière : $c = 3 \times 10^8 \text{m/s}$.

4) Pour une cathode en césium, il y a effet photoélectrique si la fréquence du rayonnement est supérieure à une valeur seuil $f_0 = 4.6 \times 10^{14} \, \mathrm{Hz}$. On éclaire successivement cette cathode par le rayonnement A puis par le rayonnement C. Dans quel cas y a-t-il effet photoélectrique ?

(D'après sujet de Bac Pro Industries graphiques Session 2001)