

DEVOIR SUR L'ÉNERGIE MÉCANIQUE

Exercice 1

Une bille est lancée verticalement vers le haut. Sa masse est m=0,020 kg. Trois positions successives de la bille sont indiquées par le schéma suivant :

$h_3 = V_3 = 0 \text{ m/s}$	$E_{p_3} =$	$\mathbf{E}_{\mathbf{k}_3} = 0 \; \mathbf{J}$	E _m =
$h_2 = V_2 =$	$E_{p_2} =$	E _{k2} =	E _m =
$h_1 = 3 \text{ m} V_1 = 12 \text{ m/s}$	E _{p1} =	$E_{k_1} =$	E _m =

On suppose que la bille est animée d'un mouvement de translation et que l'énergie potentielle E_p est nulle au niveau du sol.

Dans tout le problème on utilisera le principe de la conservation de l'énergie mécanique :

$$E_m = E_p + E_k = constante.$$

On rappelle que $E_p = mgh$ et $E_k = \frac{1}{2}mv^2$

Les résultats seront exprimés au 1/100; on prendra $g = 10 \text{ m/s}^2$.

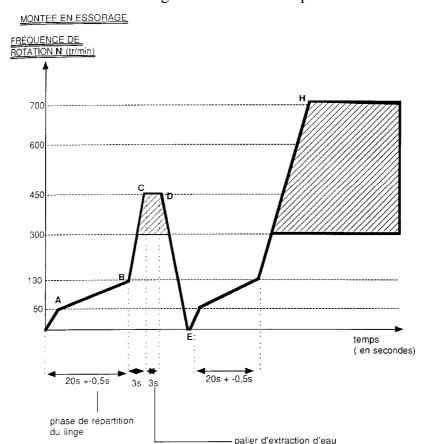
1) <u>Position 1</u>:

Calculer les énergies potentielle E_{P_1} , cinétique E_{K_1} et vérifier que l'énergie mécanique totale vaut : $E_m = 2,04 \text{ J}$.

2) <u>Position 2</u>:

- a) Déterminer h_2 pour que $E_{P_2} = E_{K_2} = \frac{E_m}{2}$
- b) Calculer v_2 dans ces conditions.

3) Position 3:


La bille est à son point le plus haut. Sa vitesse v_3 est nulle.

- a) Déduire directement de la valeur h_2 trouvée en 2) a), celle de h_3 .
- b) Vérifier la valeur de h_3 en utilisant le fait que E_k est nulle.

(D'après sujet de Bac Pro EIE Session juin 2002)

Exercice 2

1) On donne, sur le document technique ci-contre, la représentation graphique de la fréquence de rotation du tambour d'un lave-linge en fonction du temps.

- a) La phase AB est-elle une phase d'accélération? Justifier la réponse.
- b) L'accélération de la phase BC est-elle supérieure à celle de la phase AB ? Justifier la réponse.
- c) Que peut-on dire du mouvement du tambour au cours de la phase CD? Exprimer, en tours par seconde, la fréquence de rotation f_c correspondant au point C.
- d) Quel est le nombre de tours effectués par le tambour durant la phase CD?
- e) En déduire la valeur de la vitesse angulaire de rotation du tambour, ω , exprimée en rad/s, correspondant au point C.
- 2) On considère que le tambour est un cylindre homogène, de masse m=10 kg et de rayon R=25 cm. On donne: $J=\frac{1}{2}mR^2$ et $E_c=\frac{1}{2}J\omega^2$.
- a) Préciser l'unité de J.
- b) Calculer le moment d'inertie J du tambour par rapport à son axe de rotation.
- c) Calculer l'énergie cinétique de rotation du tambour, exprimée en joules, pendant la phase (CD), en prenant comme vitesse angulaire $\omega = 47 \text{ rad/s}$.

(D'après Bac Pro Maintenance des Appareils et Equipements Ménagers et de Collectivités Session 1997)