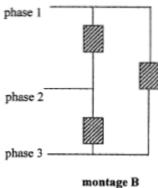

EXERCICES SUR LE RÉGIME SINUSOÏDAL TRIPHASÉ



Exercice 1

Dans un atelier, on dispose d'un réseau triphasé 230 V / 400 V. On désire brancher sur chaque phase dix lampes placées en parallèle.

Deux montages A et B représentés ci-dessous sont proposés. Sur ces schémas, chaque rectangle hachuré représente un ensemble de dix lampes montées en parallèle.

etoile.

- 1) Parmi ces deux montages, indiquer celui qui représente un montage étoile.
- 2) Donner le nom de l'autre montage.
- 3) On lit sur chaque lampe 230 V et 150 W. Indiquer le type de montage à utiliser pour le branchement de ces lampes. Justifier la réponse.

(D'après sujet de Bac Pro Bois Session juin 2005)

Exercice 2

La fabrication d'une plaque de cheminée peut se décomposer en deux étapes : la fusion de la fonte et sa coulée dans un moule.

La plaque signalétique du four à induction utilisé pour la fusion de la fonte est la suivante :

Puissance utile : 26 kW Rendement : 0,85 Facteur de puissance : 0,87 Tension : 380 V Température maximale : 1 965°C

Charge maximale : 150 kg

- 1) Calculer la puissance absorbée en kW par le four.
- 2) Le four est alimenté par un courant triphasé. Montrer que l'intensité du courant en ligne nécessaire pour fournir la puissance absorbée est d'environ 53,4 A.
- 3) Calculer la puissance apparente du four.
- 4) Calculer la puissance réactive du four.

(D'après sujet de Bac Pro Mise en Œuvre des Matériaux Session juin 2004)

Un atelier est relié à un réseau électrique triphasé (400 V) qui alimente une machine dont le moteur possède les caractéristiques suivantes :

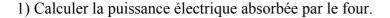
$$U = 230 \text{ V MONO}$$

 $Pu = 1,4 \text{ kW}$
(rendement) $\eta = 0,8$
 $\cos \varphi = 0,86$

1) Recopier puis compléter le branchement du moteur sur le réseau électrique.

		Phase 1
		Phase 2
		Phase 3
		Neutre
1	1	

- 2) Calculer la puissance électrique absorbée (P_a) pour le moteur.
- 3) Calculer, en ampères, la valeur de l'intensité efficace (*I*) du courant traversant le circuit. Exprimer le résultat arrondi au dixième.

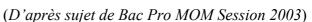

(D'après sujet de Bac Pro EOGT Session 2003)

Exercice 4

Pour effectuer la fusion d'un alliage, on utilise un four électrique fonctionnant en triphasé. Dans la notice technique de ce four, on peut lire les indications suivantes :

- puissance utile : 5,184 kW
- 230 V 50 Hz.
- $-\cos \varphi = 0.97$ $\eta = 0.72$

Le câble d'alimentation de ce four est détérioré, on désire le remplacer.



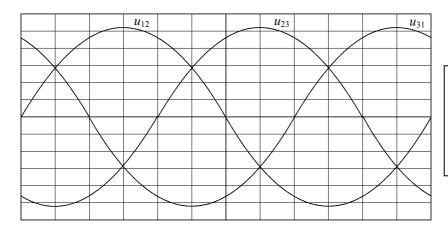
- 2) Calculer l'intensité efficace, arrondie à l'unité, circulant dans ce câble.
- 3) On donne le tableau suivant des caractéristiques des câbles :

Section	1,5 mm ²	2,5 mm ²	6 mm ²
Intensité maximale	10 A	15 A	20 A

Choisir la section du câble de remplacement.

- 4) a) Que peut-il se passer si l'on utilise un câble de section inférieure?
- b) Quel organe de protection doit-on utiliser pour protéger la ligne d'une surintensité?
- c) Quelle précaution doit-on prendre avant d'intervenir sur le remplacement du câble pour éviter tout risque électrique ?

Sur la plaque signalétique d'un moteur triphasé d'une machine, on lit :


Hz	kW	\triangle V \downarrow	\triangle A \downarrow	cos φ	min ⁻¹
50	0,55	230 / 400	2,8 / 1,6	0,82	2 800

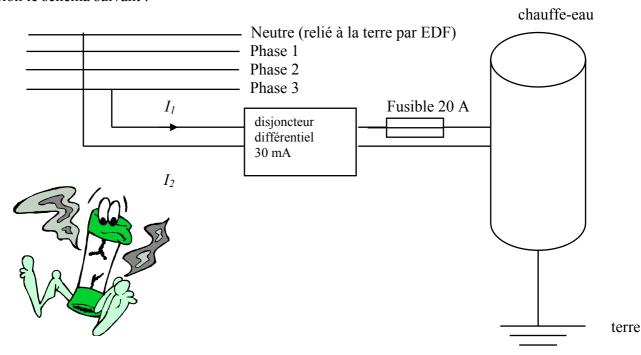
- 1) Dans le tableau ci-dessus, remplir les cases de la dernière ligne avec les mots : *intensité en ligne, fréquence du courant, tension composée (entre phases), facteur de puissance, fréquence de rotation* et *puissance utile.*
- 2) Déterminer la tension nominale d'un enrouleur du moteur.
- 3) Le moteur est monté en étoile, déterminer la tension composée et l'intensité en ligne.
- 4) Calculer la puissance absorbée par ce moteur en montage étoile.
- 5) Calculer le rendement du moteur.

(D'après sujet de Bac Pro Productique Bois Session juin 2003)

Exercice 6

Une pompe hydraulique permet de faire tourner un alternateur triphasé. On se propose de déterminer les tensions fournies à l'aide de l'oscillogramme ci-dessous :

Balayage horizontal: 0,2 ms par division


Sensibilité verticale : 50 V par division

- 1) Déterminer la période T, la fréquence f et la valeur maximale U_{\max} de l'une des tensions composées.
- 2) Déterminer le déphasage φ entre la tension u_{12} et la tension u_{23} .
- 3) Quelle est la valeur efficace U de l'une des tensions composées ?

(D'après sujet de Bac Pro Aéronautique Session juin 2002)

L'eau chaude des vestiaires d'une entreprise provient d'un chauffe-eau électrique alimenté selon le schéma suivant :

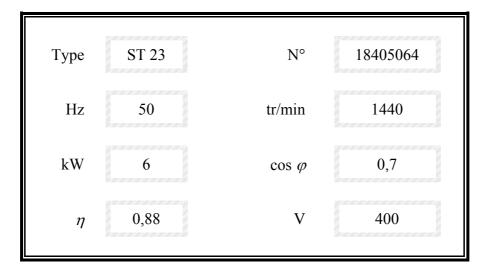
- 1) Dans l'installation identifier le système qui permet de protéger les personnes et celui qui permet de protéger l'installation.
- 2) En l'absence de défaut d'isolement, les intensités des courants I_I circulant dans le fil de phase et I_2 dans le fil neutre sont égales. En déduire l'intensité du courant de fuite I_d .
- 3) Un défaut d'isolement entre le fil de phase et l'enveloppe métallique du chauffe-eau équivaut à une résistance $r = 4\,000\,\Omega$ entre le chauffe-eau et la terre.
- a) Sachant que la tension entre le fil de phase et la terre est de 230 V, calculer, en milliampère la valeur de l'intensité *I*d du courant qui circule dans le fil de terre. Arrondir le résultat à l'unité.
- b) Le défaut précédent provoque-t-il l'ouverture du circuit par le disjoncteur différentiel ? Justifier la réponse.

(D'après sujet de Bac Pro Plasturgie Session 2002)

Exercice 8

Un atelier est alimenté en courant alternatif triphasé 240 V/400 V. L'installation comporte 4 fils schématisés ci-dessous :

phase 1		
phase 2		
phase 3		
neutre		


Reproduire le schéma des fils en indiquant où se situent les tensions 240 V et 400 V.

(D'après sujet de Bac Pro Artisanat et Métiers d'Art Session 2003)

Un moteur, dont la plaque signalétique est reproduite ci-dessous, est utilisé sur la chaîne des bains électrolytiques. Il est alimenté par le réseau triphasé 230/400 V.

Plaque signalétique du moteur :

En utilisant cette plaque signalétique :

- 1) Indiquer la puissance utile et le rendement du moteur. Calculer la puissance absorbée par le moteur (exprimer le résultat arrondi à la dizaine).
- 2) Calculer l'intensité en ligne si $P_a = 6~800~\mathrm{W}$.
- 3) Le moteur est couplé en triangle. Indiquer la tension supportée par un enroulement.

(D'après sujet Bac Pro Traitement de surface Session juin 2002)

Exercice 10

Le moteur triphasé d'une grue alimentée par le réseau EDF 230 / 400 V - 50 Hz a les caractéristiques suivantes :

- puissance utile : 4,4 kW;

- facteur de puissance : 0,85 ;

- rendement: 80 %.

Calculer:

- 1) la puissance électrique absorbée par ce moteur,
- 2) en ampère, l'intensité du courant en ligne arrondie à 0,1.

(D'après sujet de Bac Pro E.O.G.T. Session 1999)