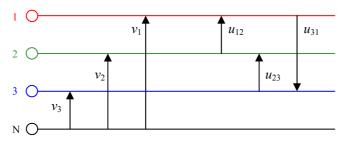


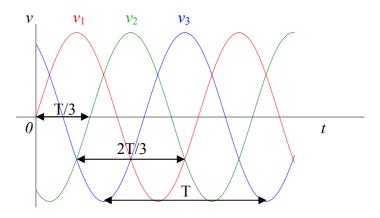
RÉGIME ALTERNATIF SINUSOIDAL TRIPHASÉ

Dans l'industrie ou pour pouvoir utiliser des puissances élevées, on a recours à une distribution triphasée.


Une prise triphasée est constituée de 5 bornes :

- trois bornes appelées phases 1, 2 et 3;
- une borne appelée neutre N;
- une borne reliée à la terre.

I) Les tensions simples v(t) et les tensions composées u(t)

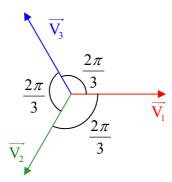

Les tensions simples sont prises entre le neutre et une phase (v_1, v_2, v_3) . Les tensions composées sont prises entre deux phases (u_{12}, u_{23}, u_{31}) .

1) Caractéristiques des tensions simples

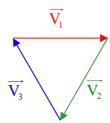
L'oscillogramme des trois tensions simples ci-dessous montre qu'elles sont :

- sinusoïdales
- de même période T et par conséquent de même pulsation ω
- de même amplitude
- décalées d'un tiers de période donc déphasées de $2\pi/3$

Les tensions simples ont même valeur efficace (V). Leurs valeurs instantannées peuvent s'écrire :


$$v_1(t) = V\sqrt{2}\sin\omega t$$

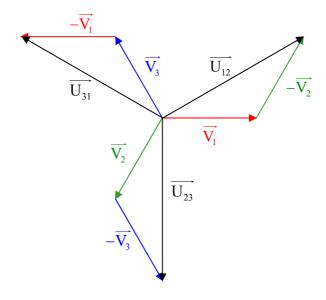
$$v_2(t) = V\sqrt{2}\sin\left(\omega t - \frac{2\pi}{3}\right)$$


$$v_3(t) = V\sqrt{2}\sin\left(\omega t - \frac{4\pi}{3}\right)$$

La construction de Fresnel s'obtient en choisissant une échelle de représentation et en traçant trois vecteurs de même longueur faisant entre eux un angle de $2\pi/3$ radians ou 120° .

On constate que $\overrightarrow{V_1} + \overrightarrow{V_2} + \overrightarrow{V_3} = \overrightarrow{0}$.

2) Caractéristiques des tensions composées


Les tensions composées se déduisent des tensions simples par les relations :

$$u_{12} = v_1 - v_2 u_{23} = v_2 - v_3$$

$$u_{31} = v_3 - v_1$$

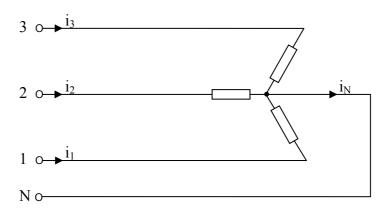
La construction de Fresnel s'obtient à partir des tensions efficaces simples. On a :

$$\begin{aligned} \overrightarrow{U_{12}} &= \overrightarrow{V_1} - \overrightarrow{V_2} \\ \overrightarrow{U_{23}} &= \overrightarrow{V_2} - \overrightarrow{V_3} \\ \overrightarrow{U_{31}} &= \overrightarrow{V_3} - \overrightarrow{V_1} \end{aligned}$$

Les tensions composées ont même valeur efficace $U_{12} = U_{23} = U_{31} = U$.

Elles sont reliées aux tensions simples par $U = V\sqrt{3}$.

On constate que $\overrightarrow{U_{12}} + \overrightarrow{U_{23}} + \overrightarrow{U_{31}} = \vec{0}$.

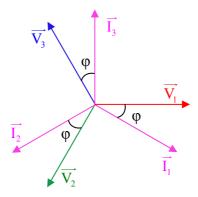

II) Montages de récepteurs triphasés équilibrés

Un montage est équilibré si les trois récepteurs sont identiques (même impédance Z en Ω , même déphasage en rad entre la tension et l'intensité).

Ces trois récepteurs peuvent être couplés en étoile ou en triangle.

1) Montage étoile

Dans ce montage, chaque élément branché entre phase et neutre est soumis à la tension simple V

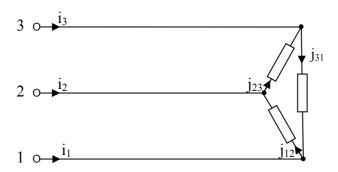


Les courants de ligne (i₁, i₂, i₃) forment un système triphasé équilibré.

Les intensités des courants de ligne qui traversent les trois récepteurs ont la même valeur efficace.

$$I_1 = I_2 = I_3 = I = \frac{V}{Z}$$

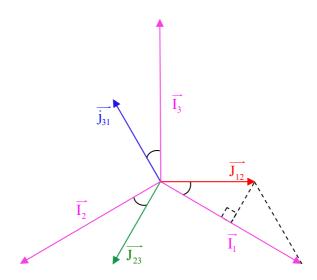
Ces trois intensités forment un système direct et équilibré : $\vec{I}_1 + \vec{I}_2 + \vec{I}_3 = \vec{I}_N = \vec{0}$ Ce système est déphasé d'un angle ϕ sur celui des tensions simples.



Le fil du neutre joue le rôle de protection.

2) Montage triangle

Dans ce montage, chaque élément branché entre deux phases est soumis à la tension composée U.


Les intensités des courant dans chaque dipôle (j₁, j₂, j₃) forment un système triphasé équilibré.

Les intensités de courant traversant chaque dipôle ont la même valeur efficace :

$$J_{12} = J_{23} = J_{31} = J = \frac{U}{Z}$$

Les intensités efficaces J dans les dipôles et l'intensité efficace I des courants de ligne sont liés par la relation :

$$I = J\sqrt{3}$$

Les intensités des courants dans les dipôles forment un système direct et équilibré :

$$\overrightarrow{J_{12}} + \overrightarrow{J_{23}} + \overrightarrow{J_{31}} = \vec{0}$$