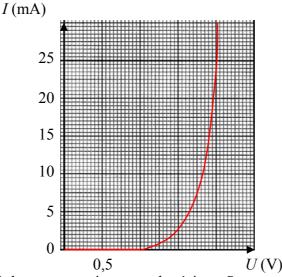
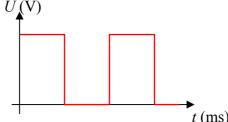


DEVOIR SUR LES TRANSDUCTEURS



Exercice 1


On souhaite visualiser à l'oscilloscope un phototransistor éclairé par une LED (ou DEL : Diode ElectroLuminescente) à forte luminosité. Le schéma de principe est le suivant :

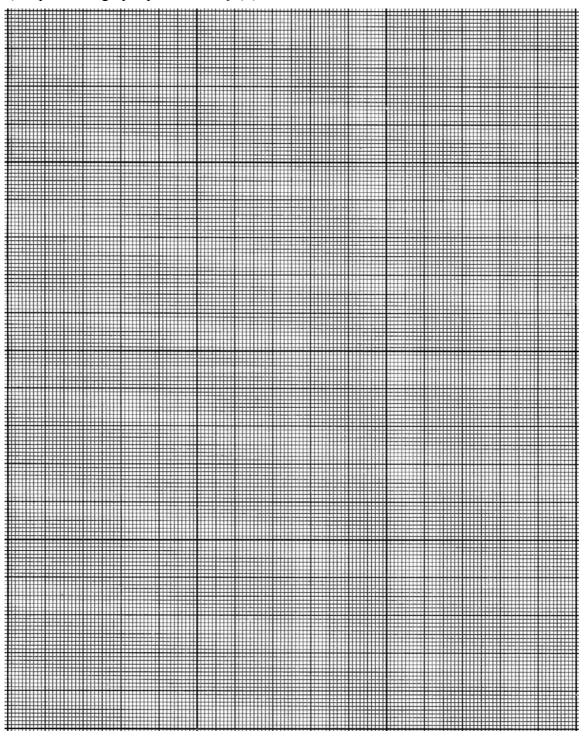
- 1) Expliquer le fonctionnement du montage.
- 2) On donne la caractéristique de la LED utilisée ; la tension à ses bornes est de 2 V.

- a) Déterminer l'intensité du courant qui traverse le résistor R_{P} .
- b) Calculer la tension d'alimentation du générateur G.
- 3) En fonctionnement, la tension U_{EC} vaut 0,7 V lorsque le phototransistor est conducteur. Calculer la tension aux bornes du résistor R_1 .
- 4) Le générateur G fournit une tension en créneaux de 20 kHz.

a) Calculer la période du signal et graduer l'axe des temps.

b) Donner l'allure I = f(t) du signal observé aux bornes du résistor R_1 .

Devoir sur les transducteurs



Exercice 2

Une thermorésistance est étalonnée entre 0° C et 100° C ; on a relevé la valeur de la résistance en fonction de la température.

θ (°C)	30	40	50	60	70	80	90	100	110	120
$R(k\Omega)$	188	141	106	76	55	40	29	21		

1) Représenter graphiquement $R = f(\theta)$.

2) La loi suivie est donnée par $R = Ae^{\frac{D}{T}}(T \text{ température absolue } : T = \theta + 273)$. Calculer les coefficients A et B et Compléter le tableau.

Devoir sur les transducteurs 2/2