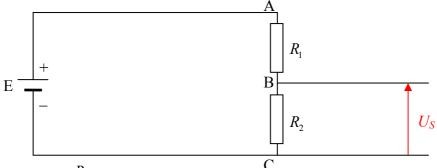


DEVOIR SUR LES TRANSDUCTEURS

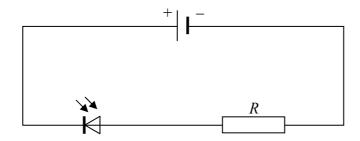
Exercice 1


On a relevé les valeurs de la résistance d'une photorésistance (en Ω) correspondant à un éclairement mesuré au luxmètre.

$R(\Omega)$	3 500	1 750	900	520	470	280	215	175	142
E (lux)	91	202	412	850	1 025	1 780	2 730	3 800	4 400

- 1) Représenter graphiquement R = f(E).
- 2) Déterminer graphiquement la valeur de la résistance de la photorésistance pour E = 3200 lux et la valeur de l'éclairement pour obtenir une résistance $R = 2400 \Omega$.

Exercice 2


On considère le pont diviseur de tension d'un transducteur électromécanique.

- 1) Montrer que $U_S = E \times \frac{R_2}{R_1 + R_2}$.
- 2) On pose $\alpha = \frac{R_2}{R_1 + R_2}$. En déduire alors que : $U_S = \alpha \times E$ et $U_{AB} = (1 \alpha) \times E$
- 3) Calculer U_{AB} et U_{BC} si $R_1 = 100~\Omega$, $R_2 = 200~\Omega$ et $E = 12~\mathrm{V}$

Exercice 3

Un générateur délivre une tension de 6 V constante. La tension relevée aux bornes de la photodiode est de 0.7 V et l'intensité du courant est de $0.9 \mu A$.

- 1) Indiquer la polarisation de la diode : directe ou inverse.
- 2) Calculer la résistance du conducteur ohmique en série avec la photodiode.
- 3) On modifie l'éclairement et la tension aux bornes de la diode devient égale à 1 V. En déduire comment a été modifié quantitativement cet éclairement.

Devoir sur les transducteurs