

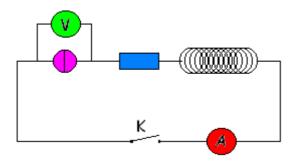
EXERCICES SUR LA PUISSANCE ÉLECTRIQUE

Exercice 1

Le cordage d'une raquette est tendu grâce à une machine à corder qui répartit uniformément la tension des cordes sur le tamis et lui évite de se voiler. La machine porte les indications suivantes :

$$230V ; 50 Hz$$

 $200 W$
 $\cos \varphi = 0.95$


Calculer l'intensité du courant absorbé par la machine. Arrondir la valeur à 10⁻².

(D'après sujet de Bac Pro Productique Mécanique Session juin 2002)

Exercice 2

La tension efficace délivrée par un générateur est 240 V.

L'intensité efficace du courant est 3 A. La puissance consommée par ce circuit est 600 W.

Calculer:

- a) l'impédance du circuit,
- b) le facteur de puissance,
- c) la valeur arrondie à $0,1~\Omega$ près de la résistance du résistor.

(D'après sujet de Bac Pro Définition des produits industriels Session juin 1998)

Exercice 3

Une salle de conférence est équipée d'un matériel de sonorisation composé de microphones, d'un amplificateur, et de haut-parleurs. Les caractéristiques techniques de l'amplificateur, portées sur la plaque signalétique, sont les suivantes :

it les suiv	1	i ampiirica	iteur, portees	s sur la plaque	V
230 V	50 Hz	100 W	120 VA		١

- 1) Donner la valeur P de la puissance active de l'amplificateur.
- 2) La valeur efficace U de la tension sous laquelle est alimenté l'amplificateur est mesurée :

$$U = 230 \text{ V}.$$

Calculer l'intensité efficace I du courant traversant l'amplificateur. Exprimer I en ampère, arrondi à 0.01.

3) Calculer le facteur de puissance $\cos \varphi$ de l'amplificateur. Exprimer $\cos \varphi$ arrondi à 0,01.

(D'après sujet de Bac Pro EOGT Session juin 2001)

Exercice 4

Une plaque signalétique d'un stérilisateur servant dans les élevages est donnée ci-dessous :

230 V	50 Hz
2 200 W	

- 1) Donner la signification des indications suivantes (préciser en toutes lettres le nom et l'unité de la grandeur) : 230 V ; 50 Hz ; 2 200 W
- 2) La puissance utile donnée par le constructeur est de 1 450 W. Calculer le rendement η de ce stérilisateur (arrondir à 10^{-3})

(D'après sujet de Bac Pro Hygiène Session septembre 2005)

Exercice 5

On relève dans un catalogue les caractéristiques suivantes d'une électrovanne d'arrosage.

Tension de fonctionnement	U = 24 V
Fréquence	f = 50 Hz
Puissance apparente	S = 55 VA
Intensité nominale	I = 2,3 A
Résistance de l'enroulement	$R = 10 \Omega$

- 1) Calculer l'impédance Z, en ohm, de l'enroulement.
- 2) Calculer l'inductance *L*, en henry, de l'enroulement.
- 3) Calculer la puissance *P*, en watt, de l'enroulement.

(D'après sujet Bac Pro MSMA Session septembre 2001)

Exercice 6

Une entreprise est sollicitée pour réaliser l'aménagement de deux salles destinées à accueillir un salon « *Mathématiques en fête* ».

Dans la salle alimentée sous 230 V, chaque stand est éclairé à l'aide de 10 spots branchés en parallèle et ayant une puissance de 50 W chacun.

1) Calculer la puissance électrique totale nécessaire à l'éclairage des huit stands.

- 2) Calculer la valeur efficace de l'intensité totale absorbée par l'ensemble des spots. En déduire la valeur efficace de l'intensité circulant à travers un spot. Arrondir le résultat au centième.
- 3) On dispose de disjoncteurs de différents calibres : 10 A ; 16 A ; 20 A et 32 A.
- a) Indiquer le rôle et le principe de fonctionnement du disjoncteur.
- b) Quel doit être le calibre du disjoncteur pour une protection efficace de l'installation ?

(D'après sujet de Bac Pro Aménagement et finition Session 2004)

Exercice 7

La plaque signalétique d'une scie permettant de débiter des blocs servant à usiner des pièces de jeu d'échecs est reproduite ci-contre.

230 V - 50Hz
Pa = 1,5 kW
$$\cos \varphi = 0.96$$

 $\eta = 65\%$

- 1) Calculer l'intensité du courant électrique qui traverse cette machine (arrondir au dixième).
- 2) Calculer la puissance utile.

(D'après sujet de Bac Pro Technicien d'usinage Session juin 2006)

Exercice 8

Sur la plaque signalétique d'un radiateur électrique on relève les indications suivantes :

~ 230 V

1000 W

- 1) Donner la signification des trois renseignements relevés
- 2) Le facteur de puissance du radiateur est égal à 1.

Calculer, à 0,01 A près, l'intensité efficace du courant nominal traversant le radiateur.

(D'après sujet de Bac Pro Bois Session juin 2004)