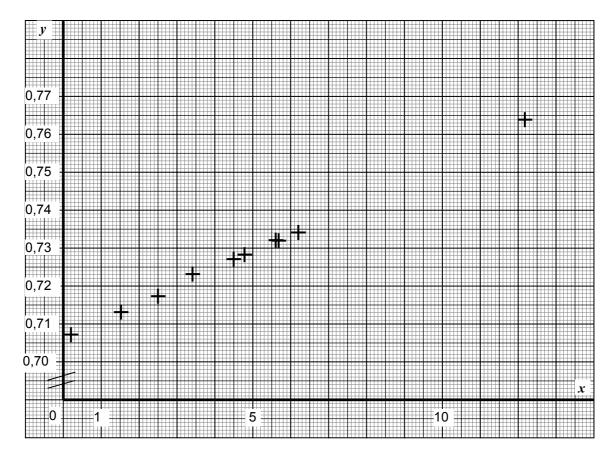


CONTRÔLE SUR LES STATISTIQUES À DEUX VARIABLES

Exercice 1

Pour déterminer l'âge d'un magma granitique d'un site, on utilise la méthode Rubidium – Strontium (Rb – Sr).


Cette méthode est basée sur la désintégration de l'isotope radioactif du rubidium ⁸⁷Rb en strontium ⁸⁷Sr.

Le strontium ⁸⁶Sr, présent également dans la roche, sert de référence.

On calcule les rapports $x = \frac{^{87}Rb}{^{86}Sr}$ et $y = \frac{^{87}Sr}{^{86}Sr}$ pour chacun des 10 échantillons prélevés sur un même site.

Echantillons	1	2	3	4	5	6	7	8	9	10
X	0,2	1,5	2,5	3,4	4,5	4,8	5,6	5,7	6,2	12,2
y	0,707	0,713	0,717	0,723	0,727	0,728	0,732	0,732	0,734	0,764

Le nuage statistique correspondant est représenté dans le repère ci-après.

1) Déterminer les coordonnées du point moyen G_1 correspondant aux 5 premiers échantillons et placer ce point.

(l'abscisse du point G_1 correspond à la moyenne des x_i des 5 premiers échantillons ; l'ordonnée du point G_1 correspond à la moyenne des y_i des 5 premiers échantillons) Arrondir chaque résultat à 0,001.

- 2) Le point moyen G_2 des 5 derniers échantillons est G_2 (6,900 ; 0,738). Placer ce point et tracer la droite (G_1G_2).
- 3) Calculer le coefficient directeur de la droite (G₁G₂). Arrondir le résultat à 0,000 1.
- 4) Le coefficient directeur de la droite (G_1G_2) permet de déterminer l'âge de la roche en utilisant la formule :

$$t = \frac{\ln(a+1)}{\lambda}$$
 avec

t : âge en année

a: coefficient directeur de la droite (G_1G_2)

 λ : constante de radioactivité du ⁸⁷Rb.

$$\lambda = \frac{\ln 2}{T}$$

T : est la demi-vie, en année, du ⁸⁷Rb.

- a) En prenant $T = 48.8 \times 10^9$ années, calculer la constante de radioactivité λ .
- b) Calculer, en million d'années, l'âge t de la roche.

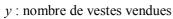
On prendra $a = 0{,}004$ 5 et $\lambda = 1{,}42 \times 10^{-11}$. Arrondir le résultat à l'unité.

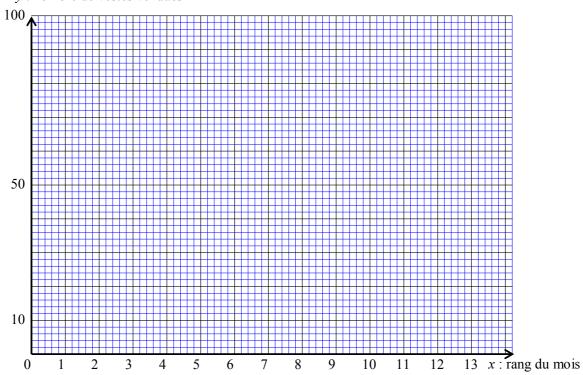
(D'après sujet de Bac Pro Artisanat et Métiers d'Art Session juin 2006)

Exercice 2

Une employée étudie le nombre de vestes kimono vendues chaque mois :

mois	janv.	fév.	mars	avril	mai	juin	juil.	août	sept.	oct.
x	1	2	3	4	5	6	7	8	9	10
v	30	30	45	40	55	55	60	60	75	75


x est le rang correspondant à chaque mois ;


y est le nombre de vestes vendues.

- 1) Sur le repère ci-après, représenter graphiquement le nuage de points correspondant à l'évolution des ventes.
- 2) Vérifier que les coordonnées du point moyen M₁ des cinq premiers points sont (3 ; 40).
- 3) Vérifier que les coordonnées du point moyen M₂ des cinq derniers points sont (8 ; 65).
- 4) Sur le repère, placer les deux points M_1 et M_2 et tracer la droite (M_1M_2) .
- 5) Déterminer une équation de cette droite.
- 6) On suppose que la production va suivre la même évolution pendant quelques mois. En utilisant l'équation de la droite (M_1M_2) , déterminer une estimation du nombre de vestes kimono qui seraient vendues en janvier de l'année suivante.
- 7) Sur le repère, vérifier graphiquement le résultat précédent. Laisser apparent les traits utiles à la lecture.

(D'après sujet de Bac Pro Artisanat et Métiers d'Art Session juin 2008)

