

FONCTIONS LOGARITHMES

I) La fonction logarithme népérien

Définition

Il existe une fonction appelée logarithme népérien et notée $f: x \mapsto \ln x$ définie sur $]0; +\infty[$.

Si
$$0 < x < 1$$
 alors $\ln x < 0$
Si $x > 1$, alors $\ln x > 0$
 $\ln (1) = 0$

La fonction $f: x \mapsto \ln x$ est strictement croissante sur $]0; +\infty[$.

Propriété

La fonction $f: x \mapsto \ln x$ est dérivable sur $]0 ; +\infty[$ et $(\ln x)' = \frac{1}{x}$.

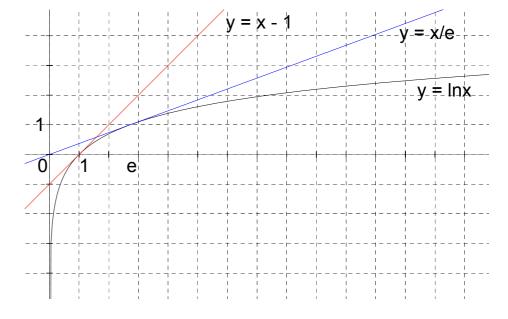
Étude et représentation

Il existe un nombre noté e tel que ln e = 1 ($e \approx 2,718281828...$)

On peut dresser le tableau de variation de la fonction $\ln x$.

x	0	1		e
	$+\infty$			
Signe de $1/x$			+	
Sens de				+∞
variation de				1
la fonction		0		
$f: x \mapsto \ln x$	- ∞			

L'axe des ordonnées est asymptote à la courbe.



Au point (1; 0), la tangente a pour équation : y = x - 1

Au point (e; 1), la tangente a pour équation : $y = \frac{x}{e}$ et passe par l'origine du repère.

II) Propriétés de calcul de la fonction logarithme

✓ Le logarithme népérien d'un produit de facteurs strictement positifs est égal à la somme des logarithmes népériens de chacun des facteurs.

Si
$$a > 0$$
, $b > 0$, $c > 0$, alors $\ln(abc) = \ln a + \ln b + \ln c$

✓ Le logarithme népérien de l'inverse d'un réel strictement positif est l'opposé du logarithme népérien de ce nombre.

Si
$$a > 0$$
, alors $\ln (1/a) = - \ln a$

 \checkmark Le logarithme népérien du quotient d'un réel strictement positif a par un réel strictement positif b est la différence entre les logarithmes népériens de a et b.

Si
$$a > 0$$
, $b > 0$, alors $\ln(a/b) = \ln a - \ln b$

 \checkmark Si a est un réel strictement positif et n un entier relatif, alors :

$$ln(a^n) = n ln a$$

✓ Si a est un réel strictement positif et n un entier naturel supérieur ou égal à 2, alors :

$$\ln(\sqrt[n]{a}) = \frac{1}{n} \ln a$$

III) Étude de la fonction logarithme décimal

Définition

La fonction logarithme décimal est définie sur]0; $+\infty$ [par la relation :

$$\text{Log } x = M \times \ln x \text{ avec } M \approx 0,43429...$$

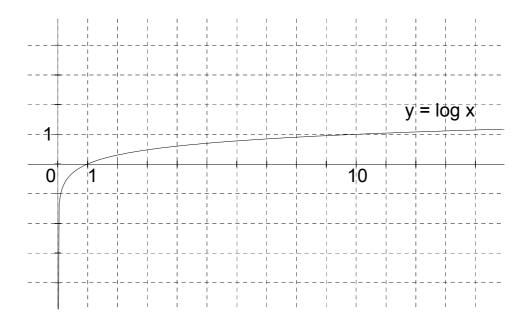
<u>Propriétés</u>

$$M = \log e = \frac{1}{\ln 10} \approx 0,434294482...$$
 $\frac{1}{M} = \frac{1}{\log e} = \ln 10 \approx 2,302585093...$

Étude et représentation

Tableau de variation de la fonction $\log x$.

x	0	1		10
	$+\infty$			
Signe de $(\log x)$ '			+	
Sens de				+8
variation de				1
la fonction		0		
$f: x \mapsto \log x$	- ∞			



Propriétés

Les nombres a et b sont des réels strictement positifs.

$$\log(a \times b) = \log a + \log b ; \log(\frac{1}{a}) = -\log a ; \log(\frac{a}{b}) = \log a - \log b$$

✓ Si n est un entier relatif, alors $\log a^n = n \log a$

✓ Si *n* est un entier naturel ≥2, alors $\log (\sqrt[n]{a}) = \frac{1}{n} \log a$