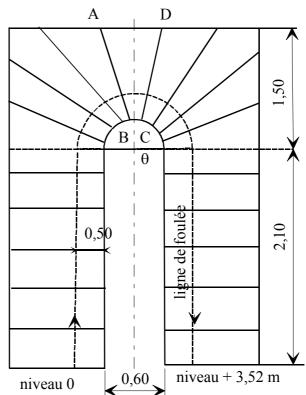


EXERCICES SUR LES ÉQUATIONS DU SECOND DEGRÉ


Exercice 1

Résoudre l'équation $\frac{1}{4}x^2 - x - 3 = 0$.

(D'après sujet Bac Pro MSMA Session septembre 2001)

Exercice 2

On veut déterminer les dimensions des marches d'un escalier tournant, représenté par le schéma suivant :

Les cotes sont en mètres

La hauteur d'une marche dépend de sa largeur.

Pour déterminer le nombre de marches, on utilise deux approches.

1ère approche:

1) On donne la relation de Blondel $\ell + 2 h = 0.64 \text{ m}$ où :

 ℓ : largeur de marche en m

h: hauteur de marche en m

Calculer la hauteur h d'une marche pour une largeur $\ell = 0.30$ m.

- 2) Calculer le nombre *n* de hauteurs de marche pour une différence de niveaux de 3,52 m. Donner le résultat arrondi au nombre entier le plus proche.
- 3) Calculer la hauteur de marche réelle. Donner le résultat arrondi au cm.

2^e approche:

On donne la formule : $-0.64x^2 + (2H + L + 0.64)x - 2H = 0$ dans laquelle :

x : nombre de hauteurs de marche

H: différence de niveaux en m; H = 3,52 m

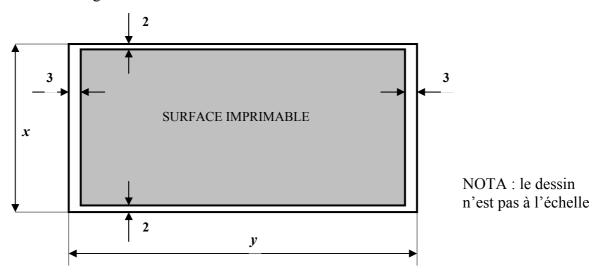
 ${\cal L}$: longueur de la ligne de foulée en m.

1) A partir des indications du schéma précédent, calculer la longueur L de la ligne de foulée. Donner le résultat au cm près.

2) Dans la formule remplacer H et L par leurs valeurs puis établir l'équation en fonction de x.

3) a) Résoudre l'équation : $-0.64x^2 + 14.39x - 7.04 = 0$.

b) Arrondir les valeurs des solutions x_1 et x_2 de l'équation au nombre entier le plus proche.


c) Quel est le nombre x de hauteurs de marche à mettre en place ?

4) Calculer pour cette valeur de x, la hauteur h et la largeur ℓ de chaque marche.

(D'après sujet de Bac Pro artisanat et métier d'art - art de la pierre Session 1999)

Exercice 3

Le but de l'exercice est de déterminer les dimensions (longueur et largeur) d'un badge rectangulaire en PVC présenté ci-dessous qui rendent l'aire imprimable maximale lorsque l'aire totale du badge a une valeur donnée.

Ce badge est fabriqué puis imprimé en laissant une marge de 3 mm à gauche et à droite, et une marge de 2 mm en haut et en bas.

On désigne par x la mesure, en mm, de la largeur du badge et par y la mesure, en mm, de la longueur du badge.

On désigne par x_{imp} la mesure, en mm, de la largeur imprimable du badge et par y_{imp} la mesure, en mm, de la longueur de la partie imprimable du badge.

- 1) Exprimer l'aire totale A du badge en fonction de x et de y.
- 2) Le client souhaite que l'aire totale du badge soit égale à 5 400 mm². En déduire l'expression de y en fonction de x.
- 3) Exprimer x_{imp} en fonction de x.
- 4) Exprimer y_{imp} en fonction de y.
- 5) En déduire que l'aire de la surface imprimable s'écrit : $A_{imp} = xy 6x 4y + 24$.
- 6) On se propose d'exprimer A_{imp} uniquement en fonction de x: En remarquant d'une part que xy représente l'aire totale du badge et d'autre part que y s'exprime en fonction de x (question 2), montrer que l'aire A_{imp} de la surface imprimable

$$A_{imp} = -6x - \frac{21600}{x} + 5424$$
.
(D'après sujet de Bac Pro Plasturgie Session 2001)

Exercice 4

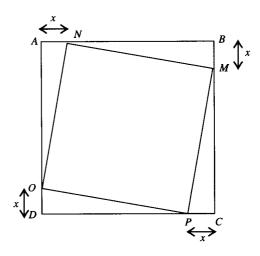
s'écrit :

On considère la fonction P définie, pour tout nombre réel x, par P(x) = 9.42(x-1)(x-3).

- 1) Montrer que, pour tout nombre réel x, $P(x) = 9.42x^2 37.68x + 28.26$.
- 2) Recopier et compléter le tableau de signes ci-dessous.

X	- ∞	1	3	$+\infty$
Signe de $(x-1)$		0		
Signe de $(x-3)$			0	
Signe de $P(x)$		0	0	

(D'après sujet de Bac Pro Construction Bâtiment et gros œuvre Session juin 2000)


Exercice 5

ABCD est un carré de 10 cm de coté.

- 1) Si BM = x, exprimer BN en fonction de x.
- 2) Calculer l'aire du carré et exprimer l'aire du triangle rectangle *BMN* en fonction de *x*.

3) Soit l'équation :
$$100 - 4 \left\lceil \frac{x(10 - x)}{2} \right\rceil = 82$$

- a) Que représente 82 ?
- b) En développant le crochet, écrire l'équation sous la forme : $ax^2 + bx + c = 0$.
- 4) Résoudre cette équation.

(D'après sujet de Bac Pro)

Exercice 6

Une entreprise produit des appareils photographiques jetables d'un certain type. Les coûts, en euros, liés à cette fabrication dépendent de la quantité q d'appareils fabriqués. Ils s'expriment par la relation : $C(q) = 0.2q^2 - 6q + 50$.

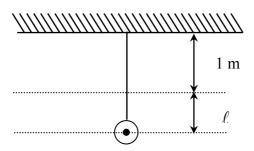
- 1) Calculer le montant des coûts pour une production de 20 appareils.
- 2) Calculer le nombre d'appareils fabriqués correspondant à un coût d'un montant de 250 €.

(D'après sujet de Bac Pro Artisanat et métiers d'art option photographie Session juin 2003)

Exercice 7

Résoudre l'équation : $-0.1x^2 + 0.6x + 7.2 = 0$.

(D'après sujet de Bac Pro Métal Alu Verre Session juin 2006)


Exercice 8

La période d'un pendule est donnée par la formule :

$$T = 2\pi \sqrt{\frac{L}{g}}$$
 avec
$$\begin{cases} T : \text{en s} \\ L : \text{longueur totale du pendule en m} \\ g : \text{accélération de la pesanteur de valeur 9,81m/s}^2 \end{cases}$$

1) L'horloger a un pendule de longueur 1 m. Calculer la période *T*. Arrondir le résultat au centième.

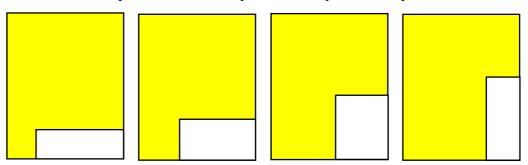
L'horloger souhaite obtenir un pendule de période égale à 2,19 s. Il décide d'allonger la barre d'une longueur ℓ , en m. Pour des raisons techniques, ℓ ne doit par dépasser 0,3 m.

On admet que la période T peut s'exprimer en fonction du « petit » allongement ℓ par la relation suivante :

$$T = -0.25 \ell^2 + \ell + 2$$
.

2) Résoudre l'équation suivante : $2.19 = -0.25 \ell^2 + \ell + 2$.

En déduire la valeur de l'allongement que l'horloger doit choisir pour obtenir une période de 2,19 s.


(D'après sujet de Bac Pro Artisanat et Métiers d'art option Horlogerie Session juin 2006)

Exercice 9

L'entreprise Prim' Jet se propose de réaliser un logo représentant la lettre P stylisée, dans d'une pièce métallique rectangulaire d'épaisseur 5 mm.

Un choix doit être effectué parmi différentes options telles que celles représentées ci-dessous :

Dans la figure suivante, la partie hachurée représente la zone où le matériau doit être déposé. Les cotes sont exprimées **en cm** et $0 \le x \le 4$.

On appelle A l'aire de la partie traitée (hachurée sur le schéma).

- 1) Calculer A pour x = 1.5.
- 2) a) Exprimer l'aire du rectangle découpé (blanc sur le schéma) en fonction de x.
- b) En déduire que l'aire A est donnée par la relation : $A = x^2 4x + 20$.
- 3) L'entreprise qui a commandé les pièces propose une aire de 17 cm². Déterminer par le calcul (ou les) cote(s) x correspondante(s).

(D'après sujet de Bac Pro Traitements de Surfaces Session juin 2007)

Exercice 10

La vitesse d'un véhicule dont la distance de freinage est de 110 mètres est solution de l'équation suivante : $0.01v^2 - 0.025v - 110 = 0$

- 1) Résoudre cette équation. Arrondir à l'unité.
- 2) En déduire la vitesse, en km/h, d'un véhicule dont la distance de freinage est de 110 mètres.

(D'après sujet de Bac Pro Sécurité Prévention Session juin 2008)