

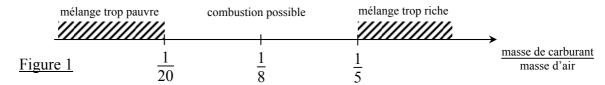
DEVOIR SUR LES FONCTIONS DÉRIVÉES

I) Présentation de la situation :

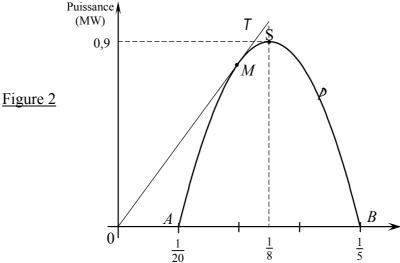
Un groupe moto-propulseur (GMP) nécessite pour son fonctionnement un dosage approprié de carburant et d'air. Le dosage s'exprime par le rapport $\frac{\text{masse de carburant}}{\text{masse d'air}}$:

par exemple, un dosage $\frac{1}{15}$ signifie que pour brûler 1 g de carburant, on utilise 15 g d'air.

La combustion est possible pour un dosage compris entre $\frac{1}{20}$ et $\frac{1}{5}$ selon le schéma cidessous :



Au banc d'essai, on relève l'évolution de la puissance en fonction du dosage pour obtenir la parabole \mathcal{P} ci-dessous :



On remarque que la puissance maximum $P_{\rm m}$ est obtenue au point S pour un dosage de $\frac{1}{8}$.

Sa valeur est 0.9 MW. On admet que le meilleur rendement du GMP est atteint pour un dosage correspondant au point M de la courbe pour lequel la tangente passe par l'origine.

L'objectif du problème est de rechercher la valeur de ce dosage.

II) Recherche mathématique

On note x le dosage et y la puissance du GMP.

- 1) Sur la courbe, figure 2, relever les coordonnées des points A, B et S en exprimant ces coordonnées sous forme décimale.
- 2) L'équation d'une parabole passant par les points A et B est de la forme :

$$y = a (x - 0.05) (x - 0.2).$$

Sachant que la parabole \mathcal{P} passe aussi par le point S, déterminer la valeur du coefficient a.

Bac Pro indus

Écrire alors l'équation de cette parabole sous la forme $y = ax^2 + bx + c$.

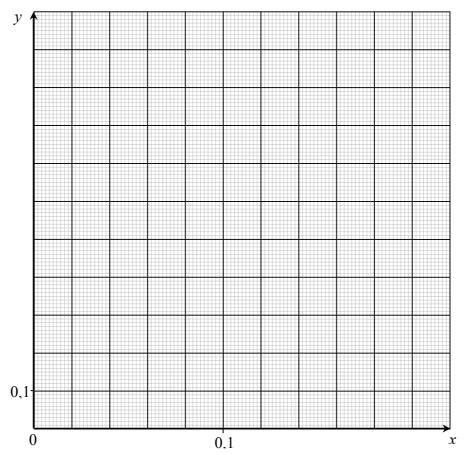
3) On considère la fonction f définie sur l'intervalle [0,05;0,2] par :

$$f(x) = -160 x^2 + 40 x - 1.6$$

- a) Calculer f'(x) où f' est la dérivée de la fonction f.
- b) Donner le tableau de variation de la fonction f sur l'intervalle [0,05;0,2].
- c) Compléter le tableau de valeurs. Les résultats seront arrondis au centième.

X	0,05	0,06	0,08	0,10	0,125	0,16	0,18	0,20
f(x)								

d) Tracer la courbe représentative de la fonction f dans le repère ci-dessous.



- 4) Tracer la tangente $\mathbf 7$ à la courbe passant par l'origine. En déduire graphiquement l'abscisse x_M du point M de tangence.
- 5) La méthode graphique étant peu précise, on se propose de déterminer par le calcul la valeur de x_M . On montre que cette valeur est solution de l'équation : $f(x_M) = f'(x_M) \times x_M$.
- a) Écrire cette équation en remplaçant $f(x_M)$ et $f'(x_M)$ par leur expression respective.
- b) Montrer que cette équation conduit, en la simplifiant, à l'équation : $160 x_M^2 1,6 = 0$.
- c) Résoudre alors cette équation dans l'intervalle [0,05; 0,2].
- 6) Conclusion: quel est le rapport $\frac{\text{masse de carburant}}{\text{masse d'air}}$ qui donne au GMP le meilleur rendement?

(D'après sujet de Bac Pro Aéronautique Session 2004)